
Procedurally Generated Planet Using a
Multi-Layered Noise Function

Alexandre Marques Dias
University of Montreal
Montreal, Canada

alexandre.marques.dias@umontreal.ca

Pierre Poulin
University of Montreal
Montreal, Canada

pierre.poulin@umontreal.ca

Figure 1: Three planets procedurally generated by manipulating nine variables that control, among other
parameters, the planet’s biomass, temperature and sunlight.

ABSTRACT

Procedural generation is a popular technique in computer
graphics for generating large-scale environments. In this
report, We specifically address the issue of creating planets
which has several applications in industries including video
games, movies, and scientific visualization. We present our
approach that combines various techniques such as fractal
noise, procedural normal mapping, shader programming
and more. By adjusting a set of nine factors that affect the
planet's size, temperature, biomass, water level, ozone
thickness, rotation speed, sunlight direction, sunlight color,
and its seed value for random creation, our method is able
to create a broad variety of various earth-like planets. To
achieve this, We start by defining the planet’s geometry,
then we create a fractal brownian function capable of taking
3D coordinates as inputs and outputting a noise value that
maps into our planet. We use these noise values to map
colors into our planet and we also generate a procedural
normal map using our fractal brownian function to simulate
realistic terrain. Afterwards, we calculate light reflection on
our terrain by implementing a simple Phong shading
algorithm with varying parameters depending on the
reflected surface. Finally, we use a variety of techniques to
implement our set of nine variables that influences the final
appearance of the generated planet.

I. INTRODUCTION
Procedurally generated graphics is an important area of
study in our field for solving problems related to generating
large-scale environments. The area we are interested in, is
the automatic generation of realistic and aesthetically
pleasing planetary environments. Procedurally generated
planets have a wide range of applications, from simulating
the surface of a planet for scientific purposes, to creating
entire fictional worlds for video games or movies. We
present our approach to procedurally generate realistic and
visually appealing planets which combines various
techniques such as fractal noise, procedural normal
mapping, shader programming, and more. Our system is
highly customizable, allowing users to adjust a set of nine
variables that influence the planet's size, temperature,
biomass, water level, ozone thickness, rotation speed,
sunlight direction, sunlight color, and its seed value for
random generation. Our approach allows us to create a wide
range of earth-like planets with different surface features,
such as mountains, craters, and oceans. The resulting
planets are visually striking and highly customizable.

The rest of this report is organized as follows. In
Section 2, we provide a brief overview of background
concepts that are relevant to our implementation. In Section
3, we describe our approach in detail, including the
techniques and algorithms we used, in a step by step
fashion. In Section 4, we review our results by comparing
them with similar projects. Finally, in Section 5, we
conclude with a summary of our findings and discuss
possible future work.



II. BACKGROUND
This section provides an overview of the different tools and
techniques used in the development of this project. We will
explain fragment shader programming, Simplex noise,
Fractal Brownian Motion (FBM), Phong shading and
normal maps.

2.1 Fragment Shader Programming
This project is written in the OpenGL Shading Language
(GLSL). The entirety of its code is written in the fragment
shader portion.

Fragment shaders are programmable graphics
processing unit (GPU) programs that are executed once for
every pixel or fragment that needs to be drawn on the
screen. In the context of the OpenGL pipeline, a fragment
shader, calculated after the vertex-based shader, is
responsible for determining the final color and other
properties of each individual pixel, based on various inputs
defined by the user, the most commons being a surface’s
normal direction, or texture coordinates. In the OpenGL
fragment shader’s programming language, GLSL,
fragments are written as functions that take in a set of input
variables and output another set of values, such as the
fragment color, depth, and stencil value. They can be used
to perform a wide range of operations on each pixel,
including texture mapping, lighting calculations, and
post-processing effects. Fragment shader programming
applications are vast, we can essentially use them to do
everything in computer graphics. We can, for example, do
texture mapping by applying a pattern or image onto a
surface, or perform lighting calculations to determine the
color of a surface based on the properties of the material.

2.2 Simplex Noise
Simplex noise is a type of gradient noise commonly used in
procedural generation techniques to create natural-looking
patterns and textures. It was developed by Ken Perlin in
2001 as an improvement over Perlin noise. It is based on a
geometrical construct known as a simplex, which is a
generalization of the notion of a triangle or tetrahedron to
arbitrary dimensions. The simplex noise function works on
a lattice of simplex cells in multiple dimensions, where
each cell contains a gradient vector pointing in a random
direction. The noise function takes a set of input
coordinates and finds the simplex cell containing those
inputs. It then calculates the dot product between the
gradient vector at the corners of the simplex cell and the
distance vectors from those corners to the input coordinates.
These dot products are then interpolated to generate a
smooth output value. In the end, a simplex noise function
takes a coordinate and returns a floating-point noise value
between -1 and 1 inclusively, where coordinates that are
close to each other have similar values. Simplex noise has
several advantages over other noise implementation
techniques, including better variation quality and faster
computation speed. It has since become a popular tool in
computer graphics, especially in procedural generation for
terrain, textures, and the simulation of natural
phenomenons.

2.3 Fractal Brownian Motion
Fractal Brownian Motion (FBM) is a multi-layered noise
function. an FBM is created by adding different iterations
of noise with different amplitudes and frequencies. Each

layer of noise is added to the previous layer, with the
amplitude and frequency of the noise increasing at each
subsequent layer. The sum of these layers creates a fractal
pattern, with increasingly fine-grained detail as the number
of layers increases. At its most basic form, an FBM takes 7
inputs : the number of octaves, the initial frequency, the
initial amplitude, the lacunarity, the gain, the noise function
and the position.

The number of octaves determines the number of
iterations of noise we go through to generate our final
output. Frequency and amplitude are two characteristics of
waves. Frequency describes the number of waves that pass
a fixed point in unit time, while amplitude describes the
height of the wave. Lacunarity dictates how much we
increment our frequency at each iteration. Similarly, gain
dictates how much we increment our amplitude at each
iteration. Finally, we have the noise function that takes the
position multiplied by the frequency at each iteration and
returns a pseudo-random number. In the end, because an
FBM uses noise functions for random generation, close
position values will have relatively close output values,
simulating organic-like randomness.

Figure 2 : An FBM curve for different values of L
(Lacunarity) at ten octaves of noise. [“The Book of
Shaders: Fractal Brownian Motion”]

In the context of computer graphics, FBMs are often used
to operate noise functions in order to implement procedural
generation with a wide variety of inputs to manipulate.

2.4 Phong Shading
Phong shading is a shading algorithm that computes a
shaded surface on the color and illumination of each pixel
using the Phong reflection model seen below.

(1)



Where Ia is the intensity of the ambient light multiplied by
ka, its ambient reflection coefficient. p is the number of
light sources while Ip is the intensity of the light source.
Diffuse lighting is calculated with kd(n · lp), where kd is the
diffuse coefficient multiplied by the dot product of the
surface normal n and the incoming light direction lp.
Specular lighting is calculated with ks(rp · v)n , where ks is
the specular coefficient multiplied by the dot product of the
direction of the reflected light rp and the view direction v.
Small n is the shininess exponent, a constant that
determines the size of the specular highlight.

The algorithm simulates the behavior of light on a 3D
object by approximating the ambient, diffuse and specular
highlights of a surface. Phong shading uses the interpolated
normal vector of a polygon's vertices to calculate the
intensity and color of the light reflected at each pixel on the
surface. If the coefficients are correctly adjusted, the final
result is a realistic illumination effect fast enough to be
usable in real time 3D graphics.

2.5 Normal Maps
Normal maps (also called bump maps) are a data structure
used to simulate small surface details on 3D objects without
having to add additional geometry to the model. The
technique works by encoding the surface normal direction
of a higher detailed 3D model on a normal map data
structure, often encoded as a 2D image. This 2D image is
then used as a texture map on a low-polygon version of the
3D model to give the illusion of additional detail. Normal
maps can be created by using specialized software that
converts high-polygon models into normal maps or
algorithms that procedurally generate normals onto a
surface. The resulting modified surface normal is then used
in the lighting calculations, making the low-polygon model
appear to have the same surface details as a high-polygon
model. The illusion works because by modifying the
normal vectors of a surface, we are able to simulate little
bumps on an object by influencing its lighting calculations
when our lighting function compares light’s incoming
direction with its angle of incidence which is defined by the
perceived surface normal.

III. MODELING
This section provides a step by step explanation of our
implementation. The equations and algorithms provided
may not always be exactly the same as seen in our actual
code, but they present our methodology more clearly.

3.1 Planet Geometry
In order to generate the geometry of a planet, which is
essentially a sphere, we define a simple circle function that
takes in a 2D position and the planet’s radius and then
returns the signed distance from the point to the circle with
the given radius. The function’s equation can be seen
below:

(2)

Where is the 2D position (which is the pixel coordinate𝑝
→

on screen) treated as a vector from the origin of the

coordinate system and r is the circle’s radius. subtracting
the length of the pixel’s vector position with the circle’s
radius gives us the distance d from the pixel to the circle’s
outline. If d is negative, it signifies that our pixel is inside
our circle, while if d is positive, it signifies our pixel is
outside our circle. By defining such a function we can then
ignore any pixel outside of our planet’s perimeter and
perform computations only on the pixels inside our circle.
The first computation we do if d is negative, is creating our
3D coordinates for our planet using the cartesian equation
for a sphere. First, we convert the pixel coordinates to
normalized coordinates by dividing them by the planet's
radius, giving us the x and y position, then we find z by
calculating the length of their normalized 2D position. In
the end, x y and z are found this way, where px and py are
the pixel position and r is the circle’s (or planet’s) radius:

(3)

Having these 3D coordinates will allow us the freedom to
perform familiar three dimensional calculations on our
planet. One of these calculations is the rotation of our
sphere to simulate planetary revolution.

3.2 Noise Manipulation
We use a Fractal Brownian Motion function to manipulate
our Simplex noise function. Our implementation of the
FBM is fairly conventional and takes the same inputs a
regular FBM would, which include the octaves, amplitude,
frequency, lacunarity and gain. Like a regular FBM, our
function loops through each octave calculating a noise
value starting with an initial frequency and amplitude. The
frequency and amplitude are then multiplied for each
octave by the lacunarity and gain parameters. The noise
value is generated using a Simplex noise function that takes
a 3D coordinate for input multiplied by the current
frequency.

After all the octaves have been calculated, the total is
divided by a factor and raised to the power of e, scaling it
so that it ranges from 0 to 1. This scaling step makes
mapping techniques more intuitive, because we deal with a
simple range ensuring that the output of the function can be
easily used as a heightmap for terrain generation and so that
we can manipulate e for later use which we will talk about
in the next section. The layout of our final FBM function is
stated in Algorithm 1.



After implementing our FBM and feeding it the 3D
coordinates of our planet, we can then manipulate the
FBM’s parameters to arrive at a satisfactory noise layout.
By mapping our noise values as grayscale colors, we obtain
Figure 3 below.

Figure 3 : The planet’s noise value shown in values of
gray, after being manipulated by our FBM with an
octave of 6, frequency of 0.6, amplitude of 1, lacunarity
of 2, gain of 0.5 and e of 4

The final step in our noise manipulation section, is to use
our shader’s built-in sigmoid-like interpolation on our noise
to map out our land and water zones for our planet. In
GLSL, there is a function called smoothstep that
interpolates smoothly between two values based on a third
value. It takes three arguments called edge0, edge1, and x.
edge0 and edge1 define the start and end points of the
interpolation range, while x is the value to be interpolated.
Below is the equation of the smoothstep function, for edge0
= 0 and edge1 = 1 :

(4)

On our implementation, we define white zones to be land
and black zones to be water. However, the transition
between the two color tones is too smooth as shown in
Figure 3. To make their demarcation sharper, we define our
smoothstep function for our land to be edge0 = 0.05 and
edge1 = 0.1. For our water, we take higher values : edge0 =
0.02 and edge1 = 0.08. The x value for our smoothstep
functions is, of course, the noise value returned by our
FBM. Finally, we perform a simple linear interpolation
between our land and water zones using the mix function in
GLSL. Notice that our edge inputs in the smoothstep
functions are relatively close together, this will make the
output for a given range of x change more rapidly because
of our close starting and ending points. This will result in
sharper changes for our final noise value and the land/water
demarcation will become much sharper than it was before.
Figure 4 shows the final result of our noise manipulation.

Figure 4 : The final result of our noise value after
manipulating our FBM output with polynomial and
linear interpolations.

3.3 Color Mapping
After having successfully separated land areas from water
areas, It becomes trivial to map a green color to the white
zones and a blue color to the black zones to have the basic
layout of an earth-like planet. However, Only using these
two colors makes the planet look very plain and artificial.

The first thing we do to enhance our planet’s realism is
add color variation to our land and water. To do this, we use
a linear interpolation between two colors using the output
of the zone’s smoothstep function as the x value. This will
make it so we can have two shades of green for our land.
The more vibrant green will represent dense greenery at the
center of land zones, while the less vibrant green will be at
the outer layer of the land zones, where the white starts to
dissipate. We do similarly for water. This will give us a
smoother transition between land and water, without
explicitly breaking their clear demarcation. But at this
point, we are technically still using just two colors, only
with different shades. Our planet still looks very artificial.

If we look at pictures of the earth for reference, biomes
and mountainous areas of different colors can be seen from
space. The most notable biome we can see from space are
deserts. We therefore add a desert biome by creating a new
FBM with new parameters for input. The parameters we
use for the generation of our desert are extremely similar to
the ones we used for our land and water zones, the only
difference is that this time we use a lower e value to scale
down its output value so that when we use our interpolation
functions later to map the desert’s FBM output, they will
appear with less frequency than regular greenery. Desert
frequency can, of course, be influenced by our global
variables which we will talk about later. Another feature we
add to our land is mountainous terrain, which we color as
gray. This terrain is simply a mapping of higher FBM
output values of the land zones. In other words, the whitest
parts of our land will be mountainous. Another final color
we add is snow and ice for the planet’s poles, which does
not depend on any noise coordinate. Instead, we simply
map white color on our land and pale blue color to our



water solely depending on the absolute value of the planet’s
height, which is its y coordinate. After mixing (i.e linear
interpolating) the desert, the mountainous terrain and white
snow to our land, and ice to our water, then finally
combining both land and water together with one last linear
interpolation, we obtain the final result shown in Figure 5.

Figure 5 : The result of carefully applying all our color
mapping to our manipulated noise. Color mapping
takes extensive experimentation to get to a satisfactory
result.

3.4 Procedural Normal Map
In order to simulate surface micro-detail on our planet, we
procedurally generate a normal map on the surface of our
planet by using noise to perturb our sphere’s normals. Our
procedural normal map function takes in 3 inputs : the
planet’s world coordinates, the planet’s surface normals and
its FBM noise output value.

The function first calculates a noised position value.
This is a position that has slightly been jittered away from
its original position on the sphere. We generate this “jitter”
by creating a variation vector with the amount of distance
we want to jitter our original position. We then use this
vector alongside our position as new inputs to our FBM
differentiation function that calculates a new randomly
jittered position. This function calculates the difference of
our FBM output by subtracting an FBM with the position
plus the jitter amount, against the position minus the jitter
amount. This gives us a noised position in which we can
calculate a new normal on top off, which will be slightly
different from the original normal our fragment had before.
This difference between normals will be important to
simulate surface detail when applying our Phong lighting
later in the next section.

After we have our jittered positions, we calculate a
normal depending on the region our fragment is in. Indeed,
because water is flatter than land, and land is flatter than
mountainous regions, we want to have a different amount
of perturbation for each of these regions. Preferably, we
want our water to appear less bumped than our land and our

land less wrinkly than our mountains. To do this we
multiply our jittered position by a constant amount
depending if it’s water land or mountains. Water will have a
small amount of perturbation, while mountains will have a
big amount because we want them to appear tall and
textured when we implement our lighting. Below is a
suggested simple layout to implement our procedural
normal map algorithm.

3.5 Phong Implementation
Our Phong shading implementation is conventional. Our
lighting function takes as input the fragment’s normal
direction which has been modified by our procedural
normal mapping and uses it to calculate diffuse and
specular lighting. For ambient lighting, we only use a
constant. Our implementation of Phong shading is simply a
direct implementation of Phong’s reflection model seen in
Equation 1. The only important modification we do is that
we treat specular reflection differently for land and water.
Because water is supposed to be much more specular than
ground, we apply a higher specularity coefficient if the
fragment we are performing calculations for is located in
water. Our final Phong shading result is a single floating
point number representing light intensity, which we then
multiply to our planet’s color to give the final shaded result
as seen in Figure 1. Notice how specularity varies a lot
depending if it is on water or on land. Also notice how
terrain seems much rougher on mountainous areas. This is
because of our procedural normal mapping function which
gives bigger normal variations on mountains than on land
or water. As seen in the background section on Phong
shading, diffuse light is the dot product of the surface’s
normal and the light direction, and specularity uses the
reflection vector which needs the surface’s normal too. The
perturbation of our normal direction is the reason why we
are able to affect our shading so much to make our planet
appear textured.

3.6 Aesthetical elements
Our final results would not appear as great if we didn’t add
small aesthetical features to make our planet look better.
This section is mostly to cover some small but important
additions to our project. One of the things we do to
aesthetically improve our planet generation is add its
planetary rotation. Our fragment shader takes in a time
uniform, which we then use to calculate rotation over time.
We implemented a rotation function which contains a basic
y rotation matrix that takes in time as input. We then
multiply the result of our rotation matrix to our world
position, giving it new coordinates every frame. As a result,
we obtain a rotating planet, making it look much more



realistic. Another feature we added, this one much more
subtle, is the ozone layer effect. This is not at all
scientifically accurate because we don’t know what visual
effects are caused by the ozone layer, but nonetheless, all
along the edges of our planet, we added a very faint blue
gradient to give it a special ozone effect. This is done by
calculating a gradual blue transition over the z axis, which
is our deepness axis, using a smoothstep interpolation. We
do not apply phong shading on our ozone effect to make it
glow, for stylistic reasons.

3.7 Global Variables
We implemented a total of 9 global variables able to
manipulate the appearance of our planet. Take note that in
this section, we explain how we implemented seemingly
realistic variables that affect a planet’s appearance, but none
of them is truly scientifically accurate, as the end goal is to
have simple to manipulate variables and an aesthetically
pleasing planet. Will will briefly explain each variable
without going into too much detail.

The first global variable is called Seed, which is a
common term to describe a number that initializes a
random function. The seed value is injected into our
simplex noise inputs inside our FBM function. Changing
the seed will completely randomize everything that is
procedurally generated on our planet. The next variable is
called Temperature. As the name suggests, this variable
changes the average temperature of our planet. This one
simply changes how much of our planet’s surface does the
snow and ice take in the north and south poles. We simply
add our Temperature value to the edge inputs of our
smoothstep function that color maps snow and ice. A
temperature with a value equal to one removes the snow of
the north and south poles completely, while a value of
minus 1 covers the entire planet in snow and ice, making it
look like a very cold planet (Figure 7).

Figure 7 : A planet with its temperature value set to -1

The next variable is called Biomass, which is a term used in
ecology to measure the amount of biologic material in a
region. Usually, the more biomass a planetary region has,
the more dense its forests are. We simulate this by

increasing the amount of greenery our planet has by
injecting the value of the Biomass variable in the coloration
of our land by multiplying the amount of green in our RGB
by the Biomass value in our interpolation function. We also
multiply our Biomass with the parameters of our desert
FBM to control its frequency, this way, with a very high
Biomass value will eliminate desert from our planet, while
a very low biomass value will transform our planet into a
fully desert planet. Observe the rightmost planet in Figure 1
to see what a low biomass value looks like. The next
variable is calledWater Level, which controls the amount of
water our planet has. Recall how we mapped land and water
on our planet. What this global variable does is increase the
amount of “black” zones it accepts into the water zone. This
variable multiplies the edge values of our interpolation
function to influence the amount of water that will be
mapped in our noise function. A high water level will
transform our planet into what astronomers call an ocean
World while a low amount of water level will eliminate
water from our planet. The next global variable is called
Ozone which controls the amount of ozone effect on our
planet. This function simply multiplies the ozone’s color
values and the edge values of its interpolation function. The
next variable is called Planet size which determines the
radius of our planet, nothing else. Another variable is called
Rotation, which dictates our planet’s rotation speed by
multiplying the time value inside our rotation function. The
last two variables are called Sunlight and Sun Position
which affects our Phong shading algorithm. These are quite
literally variables in phong’s reflection model. Sunlight is
the light’s intensity (Ip). The intensity is a 3d vector, so it
includes the sun’s color which can be modified, while Sun
Position is transformed into a direction to become light’s
direction (lp) in our equation.

These nine variables can be manipulated independently
from each other to produce a very large variety of planets.
We suggest the reader try them out to produce new exotic
looking planets.

IV. RESULTS
In this section we compare our work with similar projects
and talk about the performance of our implementation.
4.1 Comparison with NASA’s Blue Marble
While creating our planet, we were first modeling it to
resemble earth using this reference 3D model made by
NASA (figure 8), in order to make our planet look as close
to a real planet as possible. This model was made based on
the Blue Marble photograph taken by Apollo 17. Our
attempt at making an earth-resembling planet can be seen
by looking at the leftmost planet in Figure 1. Our humble
attempt is far from being as realistic as NASA’s 3D model,
the most obvious difference being our lack of clouds. The
second most notable difference is the land, and especially
the water’s coloration. We are proud, however, to have
adjusted our shading just right to make it almost identical to
NASA’s implementation. By observing their model rotating
on itself, it is possible to notice that the specularity of their
planet is very close to ours, as well as their diffuse and
ambient lighting. Another thing worth noting is that they
seem to have implemented some sort of anti-aliasing to the
extremities of their planet, while on our planets, aliasing
can be easily noticed, especially on low resolution devices.



Figure 8 : Nasa’s 3D reproduction of The Blue Marble
[“Elegant Figures - Crafting the Blue Marble“]

4.2 Comparison with Space Engine
Space Engine is a proprietary software developed by
Cosmographic Software, founded by the astronomer and
programmer Vladimir Romanyuk. It is a 3D astronomical
visualization software that allows users to explore and
navigate the universe in real-time, with a focus on scientific
accuracy and attention to detail. Space Engine allows users
to explore hypothetical scenarios, such as traveling to
distant star systems and to customize celestial objects such
as planets (Figure 9). This software makes heavy use of
realistic procedural generation based on real scientific data,
which results in a very realistic simulation of space. Space
Engine’s procedural planet generation is extremely complex
and allows users to manipulate around two hundred
parameters! Compared to our procedural generation with
only nine global variables to manipulate, it is quite an
enormous difference. Their procedural generation produces
very realistic planets with the ability to travel through their
land and atmosphere. Our project only generates the outer
visuals of a planet, it would be impossible with our
implementation to travel “inside” our planets.

Figure 9 : Space Engine’s planet editor [“Creating a
planet – Space Engine“]

Nevertheless, it is worth mentioning that Space Engine was
the main inspiration for this project. It’s only while
developing procedural computer graphics that it becomes
apparent how difficult it is to manipulate random noise
functions to produce realistic procedural generation, and
Space Engine got me impressed with their results.

4.3 Performance
By running our shader through WebGL with Three.js on the
Chromium web browser, we can observe a stable
performance of 80 to 90 frames per second on a monitor
with 1920 pixels horizontally and 1080 pixels vertically.
We are running our program on a Linux machine with a
GeForce GTX 1650 graphics processing unit, which is a
mid-range GPU used for handling intermediate computer
graphics tasks. We believe this performance is adequate,
considering that no FPS stuttering occurs and that it is
running through WebGL instead of regular OpenGL.

V. CONCLUSION
In this report, we presented our approach to generate
planets procedurally. We worked entirely in GLSL, in the
fragment shaders portion, but by defining our planet’s
geometry we were able to work in 3 dimensions. We then
created our FBM function and found the right parameters to
map our noise function into our sphere. Afterwards we
extensively experimented with mapping our colors into our
noise values to produce a realistic-looking planet. Finally,
we implemented phong shading alongside procedural
normal mapping to simulate micro-details on our planet.

We learned a lot in the making of this project, especially
on the topic of procedural generation. We spent a large
amount of time reading and learning on the subject, in fact,
a lot of what we learned couldn’t be shown here on our
work because it wasn’t particularly useful for our specific
problem. An example of that is the extensive reading we
did on procedural signed distance function techniques. But
the only thing remotely close we have to that is our circle
SDF for our planet.

We plan to keep working on this project. One thing we
want to implement is the procedural generation of clouds,
which is the most important detail that’s missing to achieve
making a believable planet. Another thing we want to add is
more parameters to customize our planet, notably, we want
to add the ability to control the amount of continents our
planet has. Also, we want to add an user interface to control
these parameters, instead of changing them directly in the
GLSL code.



REFERENCES

Fragment Shader - OpenGL Wiki, 25 November 2020, https://www.khronos.org/opengl/wiki/Fragment_Shader.

Lecture 17 - more on Texture mapping - procedural shading, https://www.cim.mcgill.ca/~langer/557/17-slides.pdf.

“The Book of Shaders: Fractal Brownian Motion.” Book of Shaders, https://thebookofshaders.com/13/.

“Creating a planet – Space Engine.” Space Engine, https://spaceengine.org/manual/making-addons/creating-a-planet. Flick, Jasper.

“Simplex Noise.” Catlike Coding, 23 September 2021, https://catlikecoding.com/unity/tutorials/pseudorandom-noise/simplex-noise/.

“GLSL Shaders - Game development | MDN.” MDN Web Docs, 23 February 2023,

https://developer.mozilla.org/en-US/docs/Games/Techniques/3D_on_the_web/GLSL_Shaders.

“Procedural Noise: Value and Gradient Noise in GLSL [Shaders Monthly #8]” YouTube, 4 July 2022,

https://www.youtube.com/watch?v=jkYIOu8HddA.

Guo, Xichun Jennifer, and Bruce Land. “Phong Shading and Gouraud Shading.” Cornell ECE,

https://people.ece.cornell.edu/land/OldStudentProjects/cs490-95to96/GUO/report.html.

Simondev, “GLSL course” Shader Online Class

https://simondev.teachable.com/p/glsl-shaders-from-scratch

Gustavson, Stefan. “(PDF) Simplex noise demystified.” ResearchGate, 1 january 2005,

https://www.researchgate.net/publication/216813608_Simplex_noise_demystified.

“LearnOpenGL - Normal Mapping.” Learn OpenGL, https://learnopengl.com/Advanced-Lighting/Normal-Mapping.

“PROCEDURAL PLANET GENERATION IN GAME DEVELOP- MENT.” Theseus,

https://www.theseus.fi/bitstream/handle/10024/82203/opinnaytetyo.pdf?sequence=1&isAllowed=y.

“Recomputing normals for displacement and bump mapping, procedural style.” GitHub Pages,

https://stegu.github.io/psrdnoise/3d-tutorial/bumpmapping.pdf.

“Rotating Blue Marble.” YouTube, 6 October 2011, https://www.youtube.com/watch?v=laiVuCmEjlg.

“Elegant Figures - Crafting the Blue Marble.” NASA Earth Observatory, 6 October 2011,

https://earthobservatory.nasa.gov/blogs/elegantfigures/2011/10/06/crafting-the-blue-marble/. Robert Simmon

“[PDF] Fractional Brownian motion in a nutshell.” Semantic Scholar, 8 June 2014,

https://www.semanticscholar.org/paper/Fractional-Brownian-motion-in-a-nutshell-Shevchenko/5609886331c316a550900bbe04

c5878384f81a05. G. Shevchenko

https://www.khronos.org/opengl/wiki/Fragment_Shader
https://www.cim.mcgill.ca/~langer/557/17-slides.pdf
https://thebookofshaders.com/13/
https://spaceengine.org/manual/making-addons/creating-a-planet
https://catlikecoding.com/unity/tutorials/pseudorandom-noise/simplex-noise/
https://developer.mozilla.org/en-US/docs/Games/Techniques/3D_on_the_web/GLSL_Shaders
https://www.youtube.com/watch?v=jkYIOu8HddA
https://people.ece.cornell.edu/land/OldStudentProjects/cs490-95to96/GUO/report.html
https://simondev.teachable.com/p/glsl-shaders-from-scratch
https://www.researchgate.net/publication/216813608_Simplex_noise_demystified
https://learnopengl.com/Advanced-Lighting/Normal-Mapping
https://www.theseus.fi/bitstream/handle/10024/82203/opinnaytetyo.pdf?sequence=1&isAllowed=y
https://stegu.github.io/psrdnoise/3d-tutorial/bumpmapping.pdf
https://www.youtube.com/watch?v=laiVuCmEjlg
https://earthobservatory.nasa.gov/blogs/elegantfigures/2011/10/06/crafting-the-blue-marble/
https://www.semanticscholar.org/paper/Fractional-Brownian-motion-in-a-nutshell-Shevchenko/5609886331c316a550900bbe04c5878384f81a05
https://www.semanticscholar.org/paper/Fractional-Brownian-motion-in-a-nutshell-Shevchenko/5609886331c316a550900bbe04c5878384f81a05

